
1

SCM Patterns for “Agile”
Architectures

Brad Appleton
Software CM/ALM Solution Architect

Arlington Heights, IL
brad@bradapp.net

2

Agenda
• Part I: Background

– What is Architecture? Architectural Views
– What is Agility? Lean & TOC
– What is Agile Architecture?
– What is SCM? SCM & Architecture
– Core SCM Pattern Concepts

• Part II: The Patterns
– Codeline Patterns
– Build/Integration Patterns
– Promotion “Leveling” Patterns
– Variability Management
– Wrap-Up



2

3

Part I: Background/Foundation

4

What is “Software Architecture”?
The fundamental organization 

of a system:
• embodied in its components,
• their relationships to each 

other and the environment,
• and the principles governing 

its design and evolution
-- IEEE 1471-2000



3

5

4+1 Views model of Software 
Architecture (Kruchten & UML/RUP)

PhysicalConceptual

Implementation 
View

Programmers 
Configuration Mgmt

Process 
View

Performance
Scalability
Throughput

System Integrators

Logical 
View

Structure
Analysts/Designers

System topology
Delivery, installation

Communication

System Engineering

Deployment 
View

Use-Case 
View

End-user
Functionality

6

What is Agility?
“The ability to both create and respond to change in order 

to profit in a turbulent business environment.”
-- James Highsmith, Agile Software Development Ecosystems

Rapid Response with Efficiency in Motion, 
Economy of Effort, Energy in Execution, and 
Efficacy of Impact!



4

7

Agile Development Characteristics
Adaptive – responsive to change in needs & requirements 

via continuous feedback and reflective retrospection
Goal-driven – focus on producing executable-results 

(working functionality) in order of highest business value.
Iterative – short development cycles, frequent releases, 

regular feedback
Lean – simple design, streamlined processes, elimination 

of redundant information, minimal intermediate artifacts
Emergent behavior – highly collaborative self-organizing 

teams in close interaction with stakeholders

8

Principles of Lean Development
• Eliminate Waste (Minimize Artifacts & Add Nothing 

but Value)
• Build Quality In (Satisfy All Stakeholders & Deploy 

Comprehensive Testing)
• Amplify Learning (Learn by Experimentation)
• Defer Commitment (Decide as Late as Possible)
• Deliver Fast (Deliver as Fast as Possible)
• Respect People (Decide as Low as Possible)
• Optimize the “Whole” (Measure Business Impact & 

Optimize Across Organizations)
Source: Mary & Tom Poppendieck, http://www.poppendieck.com/



5

9

Theory of Constraints – 5 Focusing Steps
1. IDENTIFY the Constraint
2. EXPLOIT the Constraint
3. SUBORDINATE to the Constraint
4. ELEVATE the Constraint
5. Repeat – PREVENT INERTIA from 

becoming the Constraint

10

What is an “Agile Architecture”?
• Gracefully evolves & adapts to meet changing 

needs & constraints
• Resilient & responsive to change



6

11

What is SCM? (Traditional view)
• Configuration 

Identification
• Configuration Control
• Status Accounting
• Audit & Review
• Build & Release 

Management
• Process 

Management, etc

12

What is SCM? (Agile view)
SCM is a set of structures & practices that:
• Facilitate frequent feedback on build quality & product suitability
• Enable changing & building systems in repeatable, agile fashion with:

– Increased productivity
– Enhanced responsiveness to customers
– Increased quality

• Help your customers feel more confident

Customer
Requests

Results

R2R2

V2

R2R2

V3 

R1R1

V1

R1R1

Changes Business
Value

Fee
dba
ck

Copyright © 2003-2006 by Brad Appleton & Steve Berczuk



7

13

What is SCM? (Architectural view)
Software Configuration 

Management is the
architecture of the 
evolution of architecture!

4+2 views of SCM “Architecture”
1) The Project structures
2) The flow of Evolution
3) Product Objects/Artifacts
4) Your Environment
+1) Your Processes
+2) Your Organization

14

Organization Management
Teaming & Collaboration
Producers & Consumers
Metrics/Reports/Audits

4+2 Views of SCM Architecture

PhysicalConceptual

Content
Context

decision binding-time &
change/creation time

diversity
& scaleProject

Project/Program Managers, QA/V&V
Status Accounting
Request/Defect Management
Change Planning/Tracking

CR

CR

CR

Environment
IT Engineering/Support

Workspaces/Repositories 
Application Integration

Computing Infrastructure

Evolution
Integrators/Release Mgrs
Versioning/Baselining
Branching & Merging
Parallel Development

Product

Architects/Engineers/Builders
Product/Artifact Structure

Build/Release Engineering
change/creation-time
& decision binding-time

scale &
diversity

Copyright © 1997-2006 by Brad Appleton

Process
Process-users/engineers

Process Workflow
Procedures/Training
Practices/Patterns

(Who)

(What)

(When) (Where)

(Why)

(How)



8

15

Core SCM Patterns Concepts
• What are 

Patterns?
• Codeline/Branch
• Configuration

– Version
– Revision 
– Label

• Workspace

16

What are Patterns and Pattern Languages?
• A pattern is a solution to 

a problem in a context.
• Patterns capture common 

knowledge.
• Pattern languages guide 

you in the process of 
building something using 
patterns. Each pattern is 
applied in the correct way 
at the correct time.



9

17

Codeline
• A codeline contains every version of every 

artifact over one evolutionary path.

R1R1

R2R2R1R1

R2R2

V1 V2 V3

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton

18

Branching
• Branch: A codeline that contains work that derives 

(and diverges) from another codeline.
• Branch of a file: A revision of a file that uses the 

trunk revision as a starting point.

/branch

/main



10

19

Versions, Revisions and Labels
• Revision: An element at a point in time.
• Configuration: A snapshot of the codeline at a 

point in time.
• Version: A labeled configuration. 

R1R1

R2R2R1R1

R2R2

V2 V3V1

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton

20

Workspace
• Everything you need to build the Product

– Code, Scripts, Database resources, etc.



11

21

Part II: The Patterns
• Codeline Patterns
• Build/Integration 

Patterns
• Promotion 

“Leveling”
Patterns

• Variability 
Management

• Wrap-Up

22

SCM Patterns across the 4 Views
Project

CR

CR

CR

EnvironmentEvolution

Product

• Mainline
• Release Line
• Active Development Line
• Release-Prep Codeline
• Task Branch
• Private Branch

• Private Build
• Integration Build
• Private Checkpoint
• Workspace Update
• Smoke/Regression Test
• Variability Mgmt

• Private Workspace
• Integration Workspace
• Staging Area

• Task-Based Development
• Promotion Leveling

Copyright © 2004-2006 by Brad Appleton



12

23

Codeline Patterns
• Mainline
• Active Development 

Line
• Codeline Policy
• Release Line
• Release-Prep 

Codeline
• Task Branch
• Private Branch

24

Codeline Structures for Agility
• How many codelines should you be 

working from?
• What should the rules be for check-ins?
• Codelines are the integration point for 

everyone’s work.
• Codeline structure determines the pulse of 

the project.



13

25

Mainline
• You want to simplify 

your codeline 
structure.

• How do you keep 
the number of 
codelines
manageable (and 
minimize merging)?

26

Mainline (Forces & Tradeoffs)
• A Branch is a useful tool for isolating yourself 

from change.
• Branching can require merging, which can be 

difficult.
• Separate codelines seem like a logical way to 

organize work.
• You will need to integrate all of the work 

together.
• You want to maximize concurrency while 

minimizing problems cause by deferred 
integration.



14

27

Mainline (Solution)
• Keep Latest release/project efforts on Mainline
• Branch Late/Lazy to support & maintain previous 

releases [use nested synchronization]
/ DON’T cascade new branches for follow-on 

projects/releases [avoid staircase branching]

☺ DO sync-merge to Mainline (“mainlining”) to reduce 
breadth of branch tree

28

Mainline
/main 1.0

/rel1.1

2.0

1.1 /rel2.1 2.1

3.0

/rel1.0 1.0

1.1/rel1.1

/rel2.0

/rel3.0

2.1/rel2.1

2.0

3.0

vs. Cascading Staircase



15

29

Active Development Line
• You are developing 

on a Mainline.
• How do you keep a 

rapidly evolving 
codeline stable 
enough to be useful 
(but not impede 
progress)?

30

Active Line (Forces & Tradeoffs)
• A Mainline is a synchronization point.
• More frequent check-ins are good.
• A bad check-in affects everyone.
• If testing takes too long: Fewer check-ins:

– Human Nature
– Time

• Fewer check-ins slow project’s pulse.



16

31

Phase Shift
• Long running tests increase the likelihood of 

phase shift.

You Edit
They Edit

You Test

Your Test passes here Your Test Would 
Fail Now

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton

32

Active Development Line (Solution)

• Use an Active Development Line.
• Have check-in policies suitable for a “good 

enough” codeline. 
• Unresolved:

– Doing development: Private Workspace
– Keeping the codeline stable: Smoke Test
– Managing maintenance versions: Release Line
– Dealing with potentially tricky changes: Task Branch
– Avoiding code freeze: Release Prep Codeline



17

33

Codeline Policy
• Active Development 

Line and Release 
Line (etc.) need to 
have different rules.

• How do developers 
know how and when 
to use each 
codeline?

34

Codeline Policy (Forces & Tradeoffs)
• Different codelines have different needs, 

and different rules.
• You need documentation. (But how 

much?)
• How do you explain a policy?



18

35

Codeline Policy (Solution)
• Define the rules for each codeline as a 

Codeline Policy. The policy should be 
concise and auditable.

• Consider tools to enforce the policy.

Codeline
Policy

Private 
Versions Release Line Release Prep

Codeline

Active
Development

Line

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton

36

Release Line
• You want to maintain 

an Active 
Development Line.

• How do you do 
maintenance on a 
released version 
without interfering 
with current work?



19

37

Release Line (Forces & Tradeoffs)
• A codeline for a released version needs a 

Codeline Policy that enforces stability.
• Day-to-day development will move too 

slowly if you are trying to always be ready 
to ship.

38

Release Line (Solution)
• Split maintenance/release activity 

from the Active Development Line
and into a Release Line. 

• Allow the line to progress on its 
own for fixes.

Active 
Development

Line

Release Line

/main Release 1 work

/Release-1 fixes

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton



20

39

Release Prep Codeline
• You want to maintain 

an Active Development 
Line.

• How do you stabilize 
a codeline for an 
imminent release 
while allowing new 
work to continue on 
an active codeline?

40

Release-Prep Codeline 
(Forces & Tradeoffs)

• You want to stabilize a codeline so you 
can ship it.

• A code freeze slows things down too 
much.

• Branches have overhead.



21

41

Release Prep Codeline (Solution)

• Branch instead of freeze. Create a 
Release Prep Codeline (a branch) 
when code is approaching release 
quality. 

• Leave the Mainline for active 
development.

• The Release Prep Codeline becomes 
the Release Line (with a stricter policy)

• Note: If only a few people are doing 
work on the next release, consider a 
Task Branch instead.

Active 
Development

Line

Release Prep 
Codeline

42

Task Branch
Created exclusively for 

the duration of a single 
development task
– Good for risky or 

experimental efforts



22

43

Private Branch
Created exclusively for 

a single developer (or 
two) for the duration 
of a project
– Encompasses multiple 

(sequential) change-
tasks

– Good for implementing 
Private Checkpoints

44

Build/Integration Patterns
• Private Checkpoint
• Workspace Update
• Task-Level Commit
• Private Build
• Integration Build
• The Three Builds
• Smoke Test
• Regression Test



23

45

Private Checkpoint
• An Active Development 

Line will break if people 
check in half-finished 
tasks.

• How can you 
experiment with 
complex changes and 
still get the benefits 
of version 
management?

46

Private Checkpoint 
(Forces & Tradeoffs)

• Sometimes you may want to checkpoint 
an intermediate step of a long, complex 
change.

• Your version management system 
provides the facilities for checkpointing.

• You don’t want to publish intermediate 
steps.



24

47

Private Checkpoint (Solution)
• Provide developers with a mechanism for 

checkpointing changes using a simple 
interface.

• Can Implement as any of the following:
– Private Archive/Repository
– Private Branch
– Task Branch
– Private Label/Tag

48

Workspace Update
• Synchronize your 

workspace with the 
codeline, without 
breaking the codeline

• Reconcile recent 
changes together 
sooner & keep 
developers aware of 
others activities



25

49

Workspace Update

DeveloperDeveloper

codeline

private 
workspace

update

50

Task Level Commit
• You need to 

associate changes 
with an Integration 
Build.

• How much work 
should you do 
before checking in 
files?



26

51

Task Level Commit 
(Forces & Tradeoffs)

• The smaller the task, the easier it is to roll 
back.

• A check-in requires some work.
• It is tempting to make many small changes 

per check-in.
• You may have an issue system that 

identifies units of work.

52

Task Level Commit (Solution)
Do one commit per small-grained task.
• [Compare with Task Branch for long lived efforts]

DeveloperDeveloper

codeline

private 
workspace

update

commit



27

53

Private Development Build
• You need to build to 

test what is in your 
Private Workspace.

• How do you verify 
that your changes 
do not break the 
system before you 
commit them to the 
Repository?

54

Private Development Build 
(Forces & Tradeoffs)

• Developer Workspaces have different 
needs than the system build.

• The system build can be complicated.
• Checking-in changes that break the 

Integration Build is bad.



28

55

Private Build (Solution)
• Build the system using the same 

mechanisms as the central integration 
build, a Private Development Build.

• This mechanism should match the 
integration build.

• Do this before checking in changes! 
• Update to the codeline head before a 

build.

56

Integration Build
• What is done in a 

Private Workspace
must be shared with 
the world.

• How do you make 
sure that the code 
base always builds 
reliably?



29

57

Integration Build 
(Forces & Tradeoffs)

• People do work independently.
• Private Development Builds are a way to 

check the build.
• Building everything may take a long time.
• You want to ensure that what is checked-

in works.

58

Integration Build (Solution)
• Do a centralized build for the entire code 

base.

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton



30

59

The Three Builds
• Private Development Build

– Provides a consistent way for the developer to build 
the software in the confines of their private workspace

• Team Integration Build
– Synchronize team, feedback on code quality/integrity

• Formal Release Build
– Creates the deployable package

• Why?:
– Productivity, predictability, documented, ability 

to delegate build activity without 
compromising CM or quality.

60

The Three Builds

Private
Build

Developer

T
as

k U
nit

/ C
om

p. 

Development
Team

M
ul

ti-
T

as
k 

C
oo

rd
in

at
io

n C
om

ponent
/ Product

Integration
Build

Customer /
Test (V&V)

Product /
System

It
er

at
io

n 
/

R
el

ea
se

 

Release
Build

Copyright © 2003-2006 by Brad Appleton & Steve Berczuk



31

61

Smoke Test
• You need to verify an 

Integration Build or a 
Private Build so that 
you can maintain an 
Active Development 
Line?

• How do you verify 
that the system still 
works after a 
change?

62

Smoke Test 
(Forces & Tradeoffs)

• Exhaustive testing is best for ensuring 
quality.

• The longer the test, the longer the check-
in, encouraging less frequent check-ins.



32

63

Smoke Test (Solution)
• Subject each build to a Smoke Test that 

verifies that the application has not broken 
in an obvious way.

• Unresolved: A Smoke Test is not 
comprehensive. You will need to find:
– Problems you think are fixed: Regression Test
– Low level accuracy of interfaces: Unit Test

64

Regression Test
• A Smoke Test is good 

but not 
comprehensive.

• How do you ensure 
that existing code 
does not get worse 
after you make 
changes?



33

65

Regression Test 
(Forces & Tradeoffs)

• Comprehensive testing takes time.
• It is good practice to add a test whenever 

you find a problem.
• When an old problem recurs, you want to 

be able to identify when this happened.

66

Regression Test (Solution)
• Develop Regression Tests based 

on test cases that the system 
has failed in the past.

• Run Regression Tests whenever 
you want to validate the system.

Smoke Test

Regression
Test



34

67

Promotion “Leveling” Patterns
• What is “Promotion”?
• Version Promotion
• Promotion Workspaces 
• Branch Promotion
• Promotion Branches
• Label Promotion

68

What is a Promotion Lifecycle?
• A series of stages/levels that our end-result 

must pass through before we are willing to 
“release” it to others

• A sequence of significant milestone events, 
each of which represents either:
– an increase in confidence, or …
– a transfer of responsibility
in assuring the release-quality of a deliverable

Example Promotion Lifecycles:
• {Developed, Reviewed, Tested, Audited, Released}
• {Development, Staged, Tested, Validated, Production}
• {Private, Team, QA, Customer, Failed}



35

69

Common Promotion Mechanisms
• Version Promotion (Promoted Versions) 
• Promotion Workspaces
• Branch Promotion (Promoted Branch) 
• Promotion Branches (Promotion Branching) 
• Label Promotion (Promoted Label) 
• Promotion Labels (Promotion Labeling)

– Equivalent to Version Promotion using Labels as the 
“attribute values” for  the promotion-level

70

Version Promotion
• The most recent version of each file on the codeline is 

associated with a promotion level
• File versions are “promoted” to the next level by 

“advancing” their promotion-level attribute
• Whenever a file is “updated”, it starts over again at the 

initial promotion level.

PRO: Can easily discern if all files on the tip of the codeline 
are at the correct promotion level, and which files aren’t

CON: Can be very cumbersome to implement if you have 
to do it yourself



36

71

Version Promotion

R1R1

R2R2R1R1

R2R2

V2 V3V1

F1=DEV
F2=DEV

F1=INT
F2=INT

File F1

File F2

F1=INT
F2=DEV

Copyright © 2003-2006 by Brad Appleton & Steve Berczuk

72

Promotion Workspaces
• Uses a separate workspace or “staging area” for 

housing built deliverables deliverables
• When a build progresses from one level to  the next, the 

built results are “pushed” to the next-level workspace
• Common example uses three “vaults” (staging areas):

1. Development Integration “Vault”
2. Formal Integration+Test “Vault”
3. Production Distribution “Vault” (Release-Area)

PRO: No confusion over which versions in the workspace 
are at which “level”

CON: Can be time-consuming to copy/link file versions 
across workspaces or staging areas



37

73

Promotion Workspaces

Development
Integration

Formal
Integration+Test

Production
Distribution

74

Branch Promotion
• Associate promotion-level attribute with an entire 

codeline
• When tip of the codeline progresses from one level to  

the next, advance the branch’s promotion-level

PRO: Very quick & easy to “promote” – no files need to be 
copied/linked 

CON: Okay for handing off an entire branch but not as 
useful when using the same codeline for frequent 
handoffs (can’t tell status of previous handoff anymore)



38

75

Branch Promotion

76

Promotion Branches
• Uses separate branch/codeline for each promotion level
• When a build progresses from one level to  the next, the 

versions are “pushed” (copymerged)
• Very similar to promotion workspaces, but with codelines

instead (or in addition)

PRO: Codelines make for nice “integration territories” when 
transferring responsibility – avoids “turf wars” and “policy 
disputes” from competing  groups by giving each their 
own codeline and codeline policy 

CON: Creates a new version when promoting to  the next 
level (even if no changes were needed)



39

77

Promotion Branching

78

Label Promotion
• Associate promotion-level attribute with each label/build
• When build progresses from one level to  the next, 

advance the label’s promotion-level

PRO: Very quick & easy to “promote” – no files need to be 
copied/linked and no versions to merge; allows for 
multiple builds on the same codeline to each go thru  
their own promotion levels independently

CON: Can be somewhat unwieldy to implement if your tool 
doesn’t readily support “attributes” on a label/tag 



40

79

Label Promotion

80

Variability Management
• What is Product 

Variability?
• Why Product Variability?
• Branching-time or 

Binding-time?
• Binding Times
• Build/Package Options
• Feature Configuration
• Business Rules
• Composition, Inheritance 

& Aspects



41

81

What is Product Variability?
Product-Lines & Product-Families:
• Variability of a single codebase across multiple

products:

Multi-Variant Product:
• Variability of a single codebase across the same

product:

82

Multiple Products & Multiple Variants
Product-Lines & Product-Families:
• An entire line/family of different products with some “core”

(shared) components & functionality
• Each product has some unique combination of additional 

functionality and/or functional “variation”

Multi-Variant Product:
• Many (functional) variations of the same (product) theme
• Variations are often customer/market-specific
• Different from supporting legacy releases (multi-project):

– because the functional differences aren’t separated by time, but 
by market/customer and/or technology/platform.



42

83

Why Product Variability?
A Company may offer product variability 

because they may believe …
• “One size does not fit all!”
• It will improve competitive advantage
• It will increase their market size/share
• It will uniquely differentiation them in the market 

(branding)
• Etc.,

84

Branching-time or Binding-time?
• Many attempt product-variability with 

Branching by using a codeline per variant; 
Don’t do this!
– Branching is for isolation/synchronization of 

code across people & places during the same 
time-period:

• Concurrent/parallel & remote/distributed 
development

• Maintaining legacy/historical versions of an install-
base



43

85

Branching-time or Binding-time?
Address Variability using late-binding

(instead of branching) whenever possible!
– Branching for Variability is like Cut-n-Paste 

Reuse!
• Creates multiple instances of the same code that 

all need to be repaired for the same “bugfix” or 
enhancement

• Creates more merging & integration for something 
that is fundamentally not an issue of 
isolation+synchronization

86

Binding-Times
Example decision binding times for a point 

of functional variation (variation point):
¾Source reuse time - when reusing a 

configurable source artifact 
¾Development time
¾Static code instantiation time - during 

generation/assembly of code for build 
¾Build time - during compilation or related 

processing 

Source: www.softwareproductlines.com



44

87

More Binding-Times
¾Package time - when assembling binary & 

executable collections
¾Customer customizations. Decisions bound 

during custom coding at customer site 
¾ Install/Upgrade time. Decisions bound during 

the installation of the software product 
¾Startup time. Decisions bound during system 

startup 
¾Runtime. Decisions bound when the system is 

executing 

Source: www.softwareproductlines.com

88

Build/Package Options
Manage platform differences with well 

known design & architecture patterns that 
“bind” at build-time or package-time:

• Wrapper-Façade [POSA2]
• Numerous patterns from the Gang-of-Four 

design patterns book (Factory, Factory 
Method, Bridge, etc.)

• Combine with Make/ANT options & variables  
and judicious use of conditional compilation



45

89

Post-Release Feature Configuration
Manage variation in features/feature-sets 

with selection & deselection patterns:
• Enables/disable features and services at post-

release binding-times (install/upgrade-time & 
run-time)

• Component Configurator, Interceptor, 
Extension Interface [POSA2]

• Variations of Register/Unregister and Publish-
Subscribe in a feature/service “registry”

90

Business Rules
Differences in policy/mechanism may be 

handled using a business-rules approach
• Maintains a single codebase + codeline to 

deliver a single product with multiple possible 
configurations of rules and rule-settings

• Strategy, Template Method, Adapter, 
Decorator [“Gang of Four”]

• Adaptive Object-Model [Yoder & Johnson]
• Application “resource settings”



46

91

Composition, Inheritance & Aspects
• Composition & Delegation are usually best
• Inheritance may be useful in some cases

– if the type of configuration needed really does 
fit a single hierarchical model of increasing 
specialization

• In other cases, an aspect-oriented 
approach might be better
– if the “seams” of configurability cut-across 

multiple components/services

92

Wrap Up
• Lean Branching
• CM Constraints
• Promotion Notions
• SCM Patterns 

Book
• Managing Multiple 

Variants/Products
• Other “Agile SCM”

Resources



47

93

Principles of “Lean” Branching
• Deliver as fast as possible

– Integrate fine-grained change-tasks as early as 
possible

• Decide as late as possible
– Branch as late as possible

• Decide as low as possible
– Developers reconcile merges and commit their own 

changes
• Optimize across the “Whole”

– Use a Mainline to maintain a manageable branching 
structure

94

Eliminate CM Constraints
Remove Integration/Build/Test “Bottlenecks”
• One of the single biggest “drags” on development 

feedback cycle-time is the “friction” that comes from 
prohibitive build-times, or long testing-cycles

• These force development to either freeze or branch the 
code-base for significant periods of time while waiting for 
integration/build/test activities to complete

• Integration+Build tools/scripts, code structure, and 
network resources must be leveraged appropriately to 
minimize build times



48

95

Applicability of Promotion Mechanisms
• Can mix & match mechanisms as appropriate

– Branch Promotion: useful when the branch is the unit of handoff 
or when handoffs are infrequent on that branch

– Promotion Branching: useful for separate levels of integration (so 
merging would be performed anyway) or separate 
owners/policies

– Label Promotion: well suited for a promotion levels at the same 
level (scope) of integration.

• Be wary of Branching/Labeling for promotion purposes if 
wouldn’t otherwise make sense to branch/label or merge

• Don’t “force-fit”! Some of these things emerge “naturally”
– Private/Task Branch ⇒ Active Line ⇒ Release Line
– Private Build ⇒ Integration Build ⇒ QA/Release Build

96

Managing Product Variability
• Use Late-Binding instead of Branching:

– Build/Package Options
– Feature Configuration/Selection
– Business Rules

• Think about which of the following needs to 
"vary" and what needs to stay the same:
– Interface vs. Implementation vs. Integration
– Container vs. Content vs. Context

• Commonality & variability analysis helps identify 
the core dimensions of variation for your project

• Use a combination of strategies based on the 
different types of needed variation and the 
"dimension" in which each one operates



49

97

Our Book
• Pub Nov 2002 By 

Addison-Wesley 
Professional

www.scmpatterns.com

98

Other Agile SCM Resources
• http://www.scmpatterns.com/

– SCM Patterns book has most of the codeline, workspace & 
build patterns presented here; and this site has a reference 
card and synopses for the patterns

• http://www.cmwiki.com/AgileSCMArticles
– Numerous links to specific “Agile SCM” papers on the 

subject of patterns for continuous integration, promotion, 
staging, branching & merging, and more

• http://blog.bradapp.net/ and http://acme.bradapp.net/
• http://www.berczuk.com/
• http://www.cmcrossroads.com/



50

99

Thank You!

Mahalo

Xie xieYum boticSalamat
Khawn khun

Spacibo

Arigato

Juspajaraña

Danke


