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Part I: Background/Foundation

4

What is “Software Architecture”?
The fundamental organization 

of a system:
• embodied in its components,
• their relationships to each 

other and the environment,
• and the principles governing 

its design and evolution
-- IEEE 1471-2000
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4+1 Views model of Software 
Architecture (Kruchten & UML/RUP)

PhysicalConceptual

Implementation 
View

Programmers 
Configuration Mgmt

Process 
View

Performance
Scalability
Throughput

System Integrators

Logical 
View

Structure
Analysts/Designers

System topology
Delivery, installation

Communication

System Engineering

Deployment 
View

Use-Case 
View

End-user
Functionality
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What is Agility?
“The ability to both create and respond to change in order 

to profit in a turbulent business environment.”
-- James Highsmith, Agile Software Development Ecosystems

Rapid Response with Efficiency in Motion, 
Economy of Effort, Energy in Execution, and 
Efficacy of Impact!
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Agile Development Characteristics
Adaptive – responsive to change in needs & requirements 

via continuous feedback and reflective retrospection
Goal-driven – focus on producing executable-results 

(working functionality) in order of highest business value.
Iterative – short development cycles, frequent releases, 

regular feedback
Lean – simple design, streamlined processes, elimination 

of redundant information, minimal intermediate artifacts
Emergent behavior – highly collaborative self-organizing 

teams in close interaction with stakeholders

8

Principles of Lean Development
• Eliminate Waste (Minimize Artifacts & Add Nothing 

but Value)
• Build Quality In (Satisfy All Stakeholders & Deploy 

Comprehensive Testing)
• Amplify Learning (Learn by Experimentation)
• Defer Commitment (Decide as Late as Possible)
• Deliver Fast (Deliver as Fast as Possible)
• Respect People (Decide as Low as Possible)
• Optimize the “Whole” (Measure Business Impact & 

Optimize Across Organizations)
Source: Mary & Tom Poppendieck, http://www.poppendieck.com/
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Theory of Constraints – 5 Focusing Steps
1. IDENTIFY the Constraint
2. EXPLOIT the Constraint
3. SUBORDINATE to the Constraint
4. ELEVATE the Constraint
5. Repeat – PREVENT INERTIA from 

becoming the Constraint

10

What is an “Agile Architecture”?
• Gracefully evolves & adapts to meet changing 

needs & constraints
• Resilient & responsive to change



6

11

What is SCM? (Traditional view)
• Configuration 

Identification
• Configuration Control
• Status Accounting
• Audit & Review
• Build & Release 

Management
• Process 

Management, etc

12

What is SCM? (Agile view)
SCM is a set of structures & practices that:
• Facilitate frequent feedback on build quality & product suitability
• Enable changing & building systems in repeatable, agile fashion with:

– Increased productivity
– Enhanced responsiveness to customers
– Increased quality

• Help your customers feel more confident

Customer
Requests

Results

R2R2

V2

R2R2

V3 

R1R1

V1

R1R1

Changes Business
Value

Fee
dba
ck
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What is SCM? (Architectural view)
Software Configuration 

Management is the
architecture of the 
evolution of architecture!

4+2 views of SCM “Architecture”
1) The Project structures
2) The flow of Evolution
3) Product Objects/Artifacts
4) Your Environment
+1) Your Processes
+2) Your Organization

14

Organization Management
Teaming & Collaboration
Producers & Consumers
Metrics/Reports/Audits

4+2 Views of SCM Architecture

PhysicalConceptual

Content
Context

decision binding-time &
change/creation time

diversity
& scaleProject

Project/Program Managers, QA/V&V
Status Accounting
Request/Defect Management
Change Planning/Tracking

CR

CR

CR

Environment
IT Engineering/Support

Workspaces/Repositories 
Application Integration

Computing Infrastructure

Evolution
Integrators/Release Mgrs
Versioning/Baselining
Branching & Merging
Parallel Development

Product

Architects/Engineers/Builders
Product/Artifact Structure

Build/Release Engineering
change/creation-time
& decision binding-time

scale &
diversity
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Process
Process-users/engineers

Process Workflow
Procedures/Training
Practices/Patterns

(Who)

(What)

(When) (Where)

(Why)

(How)
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Core SCM Patterns Concepts
• What are 

Patterns?
• Codeline/Branch
• Configuration

– Version
– Revision 
– Label

• Workspace

16

What are Patterns and Pattern Languages?
• A pattern is a solution to 

a problem in a context.
• Patterns capture common 

knowledge.
• Pattern languages guide 

you in the process of 
building something using 
patterns. Each pattern is 
applied in the correct way 
at the correct time.
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Codeline
• A codeline contains every version of every 

artifact over one evolutionary path.

R1R1

R2R2R1R1

R2R2

V1 V2 V3
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Branching
• Branch: A codeline that contains work that derives 

(and diverges) from another codeline.
• Branch of a file: A revision of a file that uses the 

trunk revision as a starting point.

/branch

/main
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Versions, Revisions and Labels
• Revision: An element at a point in time.
• Configuration: A snapshot of the codeline at a 

point in time.
• Version: A labeled configuration. 

R1R1

R2R2R1R1

R2R2

V2 V3V1

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton
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Workspace
• Everything you need to build the Product

– Code, Scripts, Database resources, etc.
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Part II: The Patterns
• Codeline Patterns
• Build/Integration 

Patterns
• Promotion 

“Leveling”
Patterns

• Variability 
Management

• Wrap-Up

22

SCM Patterns across the 4 Views
Project

CR

CR

CR

EnvironmentEvolution

Product

• Mainline
• Release Line
• Active Development Line
• Release-Prep Codeline
• Task Branch
• Private Branch

• Private Build
• Integration Build
• Private Checkpoint
• Workspace Update
• Smoke/Regression Test
• Variability Mgmt

• Private Workspace
• Integration Workspace
• Staging Area

• Task-Based Development
• Promotion Leveling

Copyright © 2004-2006 by Brad Appleton
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Codeline Patterns
• Mainline
• Active Development 

Line
• Codeline Policy
• Release Line
• Release-Prep 

Codeline
• Task Branch
• Private Branch

24

Codeline Structures for Agility
• How many codelines should you be 

working from?
• What should the rules be for check-ins?
• Codelines are the integration point for 

everyone’s work.
• Codeline structure determines the pulse of 

the project.
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Mainline
• You want to simplify 

your codeline 
structure.

• How do you keep 
the number of 
codelines
manageable (and 
minimize merging)?

26

Mainline (Forces & Tradeoffs)
• A Branch is a useful tool for isolating yourself 

from change.
• Branching can require merging, which can be 

difficult.
• Separate codelines seem like a logical way to 

organize work.
• You will need to integrate all of the work 

together.
• You want to maximize concurrency while 

minimizing problems cause by deferred 
integration.
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Mainline (Solution)
• Keep Latest release/project efforts on Mainline
• Branch Late/Lazy to support & maintain previous 

releases [use nested synchronization]
/ DON’T cascade new branches for follow-on 

projects/releases [avoid staircase branching]

☺ DO sync-merge to Mainline (“mainlining”) to reduce 
breadth of branch tree

28

Mainline
/main 1.0

/rel1.1

2.0

1.1 /rel2.1 2.1

3.0

/rel1.0 1.0

1.1/rel1.1

/rel2.0

/rel3.0

2.1/rel2.1

2.0

3.0

vs. Cascading Staircase
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Active Development Line
• You are developing 

on a Mainline.
• How do you keep a 

rapidly evolving 
codeline stable 
enough to be useful 
(but not impede 
progress)?

30

Active Line (Forces & Tradeoffs)
• A Mainline is a synchronization point.
• More frequent check-ins are good.
• A bad check-in affects everyone.
• If testing takes too long: Fewer check-ins:

– Human Nature
– Time

• Fewer check-ins slow project’s pulse.
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Phase Shift
• Long running tests increase the likelihood of 

phase shift.

You Edit
They Edit

You Test

Your Test passes here Your Test Would 
Fail Now

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton

32

Active Development Line (Solution)

• Use an Active Development Line.
• Have check-in policies suitable for a “good 

enough” codeline. 
• Unresolved:

– Doing development: Private Workspace
– Keeping the codeline stable: Smoke Test
– Managing maintenance versions: Release Line
– Dealing with potentially tricky changes: Task Branch
– Avoiding code freeze: Release Prep Codeline
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Codeline Policy
• Active Development 

Line and Release 
Line (etc.) need to 
have different rules.

• How do developers 
know how and when 
to use each 
codeline?

34

Codeline Policy (Forces & Tradeoffs)
• Different codelines have different needs, 

and different rules.
• You need documentation. (But how 

much?)
• How do you explain a policy?
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Codeline Policy (Solution)
• Define the rules for each codeline as a 

Codeline Policy. The policy should be 
concise and auditable.

• Consider tools to enforce the policy.

Codeline
Policy

Private 
Versions Release Line Release Prep

Codeline

Active
Development

Line

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton
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Release Line
• You want to maintain 

an Active 
Development Line.

• How do you do 
maintenance on a 
released version 
without interfering 
with current work?
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Release Line (Forces & Tradeoffs)
• A codeline for a released version needs a 

Codeline Policy that enforces stability.
• Day-to-day development will move too 

slowly if you are trying to always be ready 
to ship.

38

Release Line (Solution)
• Split maintenance/release activity 

from the Active Development Line
and into a Release Line. 

• Allow the line to progress on its 
own for fixes.

Active 
Development

Line

Release Line

/main Release 1 work

/Release-1 fixes

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton
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Release Prep Codeline
• You want to maintain 

an Active Development 
Line.

• How do you stabilize 
a codeline for an 
imminent release 
while allowing new 
work to continue on 
an active codeline?

40

Release-Prep Codeline 
(Forces & Tradeoffs)

• You want to stabilize a codeline so you 
can ship it.

• A code freeze slows things down too 
much.

• Branches have overhead.
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Release Prep Codeline (Solution)

• Branch instead of freeze. Create a 
Release Prep Codeline (a branch) 
when code is approaching release 
quality. 

• Leave the Mainline for active 
development.

• The Release Prep Codeline becomes 
the Release Line (with a stricter policy)

• Note: If only a few people are doing 
work on the next release, consider a 
Task Branch instead.

Active 
Development

Line

Release Prep 
Codeline

42

Task Branch
Created exclusively for 

the duration of a single 
development task
– Good for risky or 

experimental efforts
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Private Branch
Created exclusively for 

a single developer (or 
two) for the duration 
of a project
– Encompasses multiple 

(sequential) change-
tasks

– Good for implementing 
Private Checkpoints

44

Build/Integration Patterns
• Private Checkpoint
• Workspace Update
• Task-Level Commit
• Private Build
• Integration Build
• The Three Builds
• Smoke Test
• Regression Test
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Private Checkpoint
• An Active Development 

Line will break if people 
check in half-finished 
tasks.

• How can you 
experiment with 
complex changes and 
still get the benefits 
of version 
management?

46

Private Checkpoint 
(Forces & Tradeoffs)

• Sometimes you may want to checkpoint 
an intermediate step of a long, complex 
change.

• Your version management system 
provides the facilities for checkpointing.

• You don’t want to publish intermediate 
steps.
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Private Checkpoint (Solution)
• Provide developers with a mechanism for 

checkpointing changes using a simple 
interface.

• Can Implement as any of the following:
– Private Archive/Repository
– Private Branch
– Task Branch
– Private Label/Tag

48

Workspace Update
• Synchronize your 

workspace with the 
codeline, without 
breaking the codeline

• Reconcile recent 
changes together 
sooner & keep 
developers aware of 
others activities
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Workspace Update

DeveloperDeveloper

codeline

private 
workspace

update

50

Task Level Commit
• You need to 

associate changes 
with an Integration 
Build.

• How much work 
should you do 
before checking in 
files?
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Task Level Commit 
(Forces & Tradeoffs)

• The smaller the task, the easier it is to roll 
back.

• A check-in requires some work.
• It is tempting to make many small changes 

per check-in.
• You may have an issue system that 

identifies units of work.

52

Task Level Commit (Solution)
Do one commit per small-grained task.
• [Compare with Task Branch for long lived efforts]

DeveloperDeveloper

codeline

private 
workspace

update

commit
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Private Development Build
• You need to build to 

test what is in your 
Private Workspace.

• How do you verify 
that your changes 
do not break the 
system before you 
commit them to the 
Repository?

54

Private Development Build 
(Forces & Tradeoffs)

• Developer Workspaces have different 
needs than the system build.

• The system build can be complicated.
• Checking-in changes that break the 

Integration Build is bad.
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Private Build (Solution)
• Build the system using the same 

mechanisms as the central integration 
build, a Private Development Build.

• This mechanism should match the 
integration build.

• Do this before checking in changes! 
• Update to the codeline head before a 

build.

56

Integration Build
• What is done in a 

Private Workspace
must be shared with 
the world.

• How do you make 
sure that the code 
base always builds 
reliably?
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Integration Build 
(Forces & Tradeoffs)

• People do work independently.
• Private Development Builds are a way to 

check the build.
• Building everything may take a long time.
• You want to ensure that what is checked-

in works.

58

Integration Build (Solution)
• Do a centralized build for the entire code 

base.

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton
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The Three Builds
• Private Development Build

– Provides a consistent way for the developer to build 
the software in the confines of their private workspace

• Team Integration Build
– Synchronize team, feedback on code quality/integrity

• Formal Release Build
– Creates the deployable package

• Why?:
– Productivity, predictability, documented, ability 

to delegate build activity without 
compromising CM or quality.

60

The Three Builds

Private
Build

Developer
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Smoke Test
• You need to verify an 

Integration Build or a 
Private Build so that 
you can maintain an 
Active Development 
Line?

• How do you verify 
that the system still 
works after a 
change?

62

Smoke Test 
(Forces & Tradeoffs)

• Exhaustive testing is best for ensuring 
quality.

• The longer the test, the longer the check-
in, encouraging less frequent check-ins.
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Smoke Test (Solution)
• Subject each build to a Smoke Test that 

verifies that the application has not broken 
in an obvious way.

• Unresolved: A Smoke Test is not 
comprehensive. You will need to find:
– Problems you think are fixed: Regression Test
– Low level accuracy of interfaces: Unit Test

64

Regression Test
• A Smoke Test is good 

but not 
comprehensive.

• How do you ensure 
that existing code 
does not get worse 
after you make 
changes?
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Regression Test 
(Forces & Tradeoffs)

• Comprehensive testing takes time.
• It is good practice to add a test whenever 

you find a problem.
• When an old problem recurs, you want to 

be able to identify when this happened.

66

Regression Test (Solution)
• Develop Regression Tests based 

on test cases that the system 
has failed in the past.

• Run Regression Tests whenever 
you want to validate the system.

Smoke Test

Regression
Test
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Promotion “Leveling” Patterns
• What is “Promotion”?
• Version Promotion
• Promotion Workspaces 
• Branch Promotion
• Promotion Branches
• Label Promotion

68

What is a Promotion Lifecycle?
• A series of stages/levels that our end-result 

must pass through before we are willing to 
“release” it to others

• A sequence of significant milestone events, 
each of which represents either:
– an increase in confidence, or …
– a transfer of responsibility
in assuring the release-quality of a deliverable

Example Promotion Lifecycles:
• {Developed, Reviewed, Tested, Audited, Released}
• {Development, Staged, Tested, Validated, Production}
• {Private, Team, QA, Customer, Failed}
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Common Promotion Mechanisms
• Version Promotion (Promoted Versions) 
• Promotion Workspaces
• Branch Promotion (Promoted Branch) 
• Promotion Branches (Promotion Branching) 
• Label Promotion (Promoted Label) 
• Promotion Labels (Promotion Labeling)

– Equivalent to Version Promotion using Labels as the 
“attribute values” for  the promotion-level

70

Version Promotion
• The most recent version of each file on the codeline is 

associated with a promotion level
• File versions are “promoted” to the next level by 

“advancing” their promotion-level attribute
• Whenever a file is “updated”, it starts over again at the 

initial promotion level.

PRO: Can easily discern if all files on the tip of the codeline 
are at the correct promotion level, and which files aren’t

CON: Can be very cumbersome to implement if you have 
to do it yourself
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Version Promotion

R1R1

R2R2R1R1

R2R2

V2 V3V1

F1=DEV
F2=DEV

F1=INT
F2=INT

File F1

File F2

F1=INT
F2=DEV

Copyright © 2003-2006 by Brad Appleton & Steve Berczuk
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Promotion Workspaces
• Uses a separate workspace or “staging area” for 

housing built deliverables deliverables
• When a build progresses from one level to  the next, the 

built results are “pushed” to the next-level workspace
• Common example uses three “vaults” (staging areas):

1. Development Integration “Vault”
2. Formal Integration+Test “Vault”
3. Production Distribution “Vault” (Release-Area)

PRO: No confusion over which versions in the workspace 
are at which “level”

CON: Can be time-consuming to copy/link file versions 
across workspaces or staging areas
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Promotion Workspaces

Development
Integration

Formal
Integration+Test

Production
Distribution
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Branch Promotion
• Associate promotion-level attribute with an entire 

codeline
• When tip of the codeline progresses from one level to  

the next, advance the branch’s promotion-level

PRO: Very quick & easy to “promote” – no files need to be 
copied/linked 

CON: Okay for handing off an entire branch but not as 
useful when using the same codeline for frequent 
handoffs (can’t tell status of previous handoff anymore)
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Branch Promotion

76

Promotion Branches
• Uses separate branch/codeline for each promotion level
• When a build progresses from one level to  the next, the 

versions are “pushed” (copymerged)
• Very similar to promotion workspaces, but with codelines

instead (or in addition)

PRO: Codelines make for nice “integration territories” when 
transferring responsibility – avoids “turf wars” and “policy 
disputes” from competing  groups by giving each their 
own codeline and codeline policy 

CON: Creates a new version when promoting to  the next 
level (even if no changes were needed)
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Promotion Branching

78

Label Promotion
• Associate promotion-level attribute with each label/build
• When build progresses from one level to  the next, 

advance the label’s promotion-level

PRO: Very quick & easy to “promote” – no files need to be 
copied/linked and no versions to merge; allows for 
multiple builds on the same codeline to each go thru  
their own promotion levels independently

CON: Can be somewhat unwieldy to implement if your tool 
doesn’t readily support “attributes” on a label/tag 
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Label Promotion

80

Variability Management
• What is Product 

Variability?
• Why Product Variability?
• Branching-time or 

Binding-time?
• Binding Times
• Build/Package Options
• Feature Configuration
• Business Rules
• Composition, Inheritance 

& Aspects
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What is Product Variability?
Product-Lines & Product-Families:
• Variability of a single codebase across multiple

products:

Multi-Variant Product:
• Variability of a single codebase across the same

product:

82

Multiple Products & Multiple Variants
Product-Lines & Product-Families:
• An entire line/family of different products with some “core”

(shared) components & functionality
• Each product has some unique combination of additional 

functionality and/or functional “variation”

Multi-Variant Product:
• Many (functional) variations of the same (product) theme
• Variations are often customer/market-specific
• Different from supporting legacy releases (multi-project):

– because the functional differences aren’t separated by time, but 
by market/customer and/or technology/platform.
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Why Product Variability?
A Company may offer product variability 

because they may believe …
• “One size does not fit all!”
• It will improve competitive advantage
• It will increase their market size/share
• It will uniquely differentiation them in the market 

(branding)
• Etc.,

84

Branching-time or Binding-time?
• Many attempt product-variability with 

Branching by using a codeline per variant; 
Don’t do this!
– Branching is for isolation/synchronization of 

code across people & places during the same 
time-period:

• Concurrent/parallel & remote/distributed 
development

• Maintaining legacy/historical versions of an install-
base



43

85

Branching-time or Binding-time?
Address Variability using late-binding

(instead of branching) whenever possible!
– Branching for Variability is like Cut-n-Paste 

Reuse!
• Creates multiple instances of the same code that 

all need to be repaired for the same “bugfix” or 
enhancement

• Creates more merging & integration for something 
that is fundamentally not an issue of 
isolation+synchronization

86

Binding-Times
Example decision binding times for a point 

of functional variation (variation point):
¾Source reuse time - when reusing a 

configurable source artifact 
¾Development time
¾Static code instantiation time - during 

generation/assembly of code for build 
¾Build time - during compilation or related 

processing 

Source: www.softwareproductlines.com
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More Binding-Times
¾Package time - when assembling binary & 

executable collections
¾Customer customizations. Decisions bound 

during custom coding at customer site 
¾ Install/Upgrade time. Decisions bound during 

the installation of the software product 
¾Startup time. Decisions bound during system 

startup 
¾Runtime. Decisions bound when the system is 

executing 

Source: www.softwareproductlines.com
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Build/Package Options
Manage platform differences with well 

known design & architecture patterns that 
“bind” at build-time or package-time:

• Wrapper-Façade [POSA2]
• Numerous patterns from the Gang-of-Four 

design patterns book (Factory, Factory 
Method, Bridge, etc.)

• Combine with Make/ANT options & variables  
and judicious use of conditional compilation
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Post-Release Feature Configuration
Manage variation in features/feature-sets 

with selection & deselection patterns:
• Enables/disable features and services at post-

release binding-times (install/upgrade-time & 
run-time)

• Component Configurator, Interceptor, 
Extension Interface [POSA2]

• Variations of Register/Unregister and Publish-
Subscribe in a feature/service “registry”

90

Business Rules
Differences in policy/mechanism may be 

handled using a business-rules approach
• Maintains a single codebase + codeline to 

deliver a single product with multiple possible 
configurations of rules and rule-settings

• Strategy, Template Method, Adapter, 
Decorator [“Gang of Four”]

• Adaptive Object-Model [Yoder & Johnson]
• Application “resource settings”
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Composition, Inheritance & Aspects
• Composition & Delegation are usually best
• Inheritance may be useful in some cases

– if the type of configuration needed really does 
fit a single hierarchical model of increasing 
specialization

• In other cases, an aspect-oriented 
approach might be better
– if the “seams” of configurability cut-across 

multiple components/services

92

Wrap Up
• Lean Branching
• CM Constraints
• Promotion Notions
• SCM Patterns 

Book
• Managing Multiple 

Variants/Products
• Other “Agile SCM”

Resources
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Principles of “Lean” Branching
• Deliver as fast as possible

– Integrate fine-grained change-tasks as early as 
possible

• Decide as late as possible
– Branch as late as possible

• Decide as low as possible
– Developers reconcile merges and commit their own 

changes
• Optimize across the “Whole”

– Use a Mainline to maintain a manageable branching 
structure

94

Eliminate CM Constraints
Remove Integration/Build/Test “Bottlenecks”
• One of the single biggest “drags” on development 

feedback cycle-time is the “friction” that comes from 
prohibitive build-times, or long testing-cycles

• These force development to either freeze or branch the 
code-base for significant periods of time while waiting for 
integration/build/test activities to complete

• Integration+Build tools/scripts, code structure, and 
network resources must be leveraged appropriately to 
minimize build times
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Applicability of Promotion Mechanisms
• Can mix & match mechanisms as appropriate

– Branch Promotion: useful when the branch is the unit of handoff 
or when handoffs are infrequent on that branch

– Promotion Branching: useful for separate levels of integration (so 
merging would be performed anyway) or separate 
owners/policies

– Label Promotion: well suited for a promotion levels at the same 
level (scope) of integration.

• Be wary of Branching/Labeling for promotion purposes if 
wouldn’t otherwise make sense to branch/label or merge

• Don’t “force-fit”! Some of these things emerge “naturally”
– Private/Task Branch ⇒ Active Line ⇒ Release Line
– Private Build ⇒ Integration Build ⇒ QA/Release Build

96

Managing Product Variability
• Use Late-Binding instead of Branching:

– Build/Package Options
– Feature Configuration/Selection
– Business Rules

• Think about which of the following needs to 
"vary" and what needs to stay the same:
– Interface vs. Implementation vs. Integration
– Container vs. Content vs. Context

• Commonality & variability analysis helps identify 
the core dimensions of variation for your project

• Use a combination of strategies based on the 
different types of needed variation and the 
"dimension" in which each one operates
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Our Book
• Pub Nov 2002 By 

Addison-Wesley 
Professional

www.scmpatterns.com
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Other Agile SCM Resources
• http://www.scmpatterns.com/

– SCM Patterns book has most of the codeline, workspace & 
build patterns presented here; and this site has a reference 
card and synopses for the patterns

• http://www.cmwiki.com/AgileSCMArticles
– Numerous links to specific “Agile SCM” papers on the 

subject of patterns for continuous integration, promotion, 
staging, branching & merging, and more

• http://blog.bradapp.net/ and http://acme.bradapp.net/
• http://www.berczuk.com/
• http://www.cmcrossroads.com/
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Thank You!

Mahalo

Xie xieYum boticSalamat
Khawn khun

Spacibo

Arigato

Juspajaraña

Danke


